Substrate specificity and safener inducibility of the plant UDP‐glucose‐dependent family 1 glycosyltransferase super‐family
نویسندگان
چکیده
Plants contain large numbers of family 1 UDP-glucose-dependent glycosyltransferases (UGTs), including members that conjugate xenobiotics. Arabidopsis contains 107 UGT genes with 99 family members successfully expressed as glutathione transferase (GST)-fusion proteins in E. coli. A high-throughput catalytic screen was developed based on quantification of the fusion by measuring GST activity. UGT activity using UDP-glucose as donor was then determined using 11 synthetic acceptors bearing hydroxyl, amino and thiol groups that had been shown to undergo conjugation in plant extracts. In total, 44 UGTs, largely members of the D and E groups, were active towards xenobiotics, glucosylating phenol and thiol acceptors. In contrast, N-glucosyltransferase (NGT) activity was almost exclusively restricted to a single enzyme, UGT72B1. Using DNA microarrays, the induction of UGT transcripts following treatment with the herbicide safener fenclorim was compared in Arabidopsis and rice. D and L group members were the most safener-inducible UGTs in both species. The respective Arabidopsis enzymes showed low conjugating activity towards xenobiotics. Using Genevestigator, a small group of safened D and L UGTs were consistently induced in response to biotic and abiotic stress suggestive of protective activities beyond xenobiotic detoxification in both species. The induction of other detoxifying gene families following treatment with fenclorim, namely cytochromes P450 and glutathione transferases, further confirmed the selective enhancement of related subfamily members in the two species giving new insight into the safening response in cereals, where herbicide tolerance is enhanced compared with dicots, which are unresponsive to these treatments.
منابع مشابه
SorF: a glycosyltransferase with promiscuous donor substrate specificity in vitro.
Glycosylations are well-established steps in numerous biosynthetic pathways, and the attached sugar moieties often influence the specificity or pharmacology of the modified compounds. The sorangicins belong to the polyketide family of natural products, and exhibit antibiotic activity through inhibition of bacterial RNA polymerase. We have identified the sorangicin biosynthetic gene cluster in t...
متن کاملCatalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses.
The plant UDP-dependent glucosyltransferase (UGT) BpUGT94B1 catalyzes the synthesis of a glucuronosylated cyanidin-derived flavonoid in red daisy (Bellis perennis). The functional properties of BpUGT94B1 were investigated using protein modeling, site-directed mutagenesis, and analysis of the substrate specificity of isolated wild-type and mutated forms of BpUGT94B1. A single unique arginine res...
متن کاملThe novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution.
The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and ...
متن کاملCrystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula.
Glycosylation is a ubiquitous reaction controlling the bioactivity and storage of plant natural products. Glycosylation of small molecules is catalyzed by a superfamily of glycosyltransferases (GTs) in most plant species studied to date. We present crystal structures of the UDP flavonoid/triterpene GT UGT71G1 from Medicago truncatula bound to UDP or UDP-glucose. The structures reveal the key re...
متن کاملLeishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage?
The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the env...
متن کامل